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data. The models are illustrated using German multi-envi-
ronment trial data on yield, mildew and Septoria leaf blotch 
susceptibility for winter wheat and yield, mildew and net 
blotch susceptibility for spring barley.

Introduction

Mean yields of many crops typically show a long-term 
upward trend. This trend is partly due to genetic improve-
ment of newly released crop varieties. Advancements of 
agronomic practices and other environmental changes 
account for the remainder of the increase. There is consid-
erable interest in studies dissecting genetic and environ-
mental causes of yield trend in crops, and several studies 
with this focus have been published (e.g. Schuster et  al. 
1977; Silvey 1978, 1981, 1986; Perry and D’Antuono 
1989; Schuster 1997; Peltonen-Sainio et  al. 2009; Ahl-
emeyer and Friedt 2011; Mackay et al. 2011; Lopes et al. 
2012). Most of these studies use some kind of regression 
analysis or plots of year and/or genotype means against 
time to assess time trends.

A particular challenge in analysing time trends is to 
disentangle genetic trends due to breeding efforts from 
non-genetic trends due to agronomic progress (farm 
machinery, weed control, disease and pest control, use of 
growth regulators, and other contributory causes), climate 
change, etc. Schuster et al. (1977) and Schuster (1997) fit-
ted a regression of simple year means based on year-wise 
analyses against time and then determined genetic trend by 
subtraction of a trend line fitted for a set of standard varie-
ties (checks) that was grown for a longer period, taking the 
latter trend to represent agronomic advance. Mackay et al. 
(2011) fitted a linear mixed model with factors genotype, 
location and year. They used adjusted year means, plotted 
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against time, to assess non-genetic trend and adjusted geno-
type means, plotted against the year when a variety entered 
the trial, to assess genetic trend. We here consider an exten-
sion of this useful approach.

Mackay et  al. (2011) cautioned that due to genetic 
and non-genetic trends, a simple mixed model with inde-
pendent random genotype and year main effects would 
potentially yield biased results because of the underlying 
trends in genotype and year effects. This problem may be 
approached by explicitly fitting fixed regression terms for 
genetic and non-genetic trend, as well as random deviations 
from these trend components under a suitable linear mixed 
model. The main purpose of the present paper is to propose 
a modelling framework for this purpose and to illustrate its 
use.

The paper is structured as follows. We first describe the 
motivating datasets from German registration trials for win-
ter wheat and spring barley. The models are then outlined 
in detail, followed by a presentation of illustrative results 
for winter wheat and spring barley. The paper ends with a 
discussion, emphasizing the inherent difficulties in trying 
to dissect genetic from non-genetic trends based on long-
term variety trial data, and considering the complementa-
tion of long-term analyses with yield trials contemporane-
ously evaluating old and new varieties.

Materials and methods

Datasets

We use data from official variety trials conducted by the 
Bundessortenamt (Hannover) in Germany for the crops win-
ter wheat and spring barley. The traits considered in detail 
are yield and an ordinal mildew susceptibility score visually 
assessed on a 1–9 scale (1 =  not diseased, 9 =  fully dis-
eased). We also looked at susceptibility scores for Septoria 
leaf blotch in winter wheat and net blotch in spring barley. 
Results are presented in the supplemental material. All tri-
als were laid out as a split-plot design with two replications. 

Two different intensities were used. Intensity 1 (I1) com-
prises best agronomic practices with equal fertilizer rates 
as under intensity 2 (I2) for spring barley in all years and 
winter wheat from 2005 onwards and without applica-
tion of crop protection measures. Before 2005 the fertilizer 
rates for winter wheat were reduced by at least 40 kg per ha 
compared to intensity 2. Under intensity 2, crop protection 
against prevailing diseases and pests was applied. At each 
location, the two intensities were laid out in main plots and 
varieties in subplots, which were completely randomized 
within main plots. For the subsequent analyses we use geno
type-by-intensity means for location-year combinations, 
which were available from routine analyses conducted by 
the Bundessortenamt. We only included genotypes that had 
undergone at least 3 years of testing (Mackay et al. 2011). 
Further information on the datasets is given in Table 1.

Approach for dissecting genetic and non‑genetic sources 
of trend

The basic idea

For a given intensity, one may develop a model for trend 
in multi-year variety trial data based on a standard three-
way model with factors genotype, location and year (Laidig 
et al. 2008) as

where yijk is the mean yield of the ith genotype in the jth 
location and kth year, μ is the overall mean, Gi is the main 
effect of the ith genotype, Lj is the main effect of the jth 
location, Yk is the main effect of the kth year, (LY)jk is the 
jkth location × year interaction effect, (GL)ij is the ijth geno
type ×  location interaction effect, (GY)ik is the ikth geno-
type  ×  year interaction effect, and (GLY)ijk is a residual 
comprising both genotype × location × year interaction as 
well as the error of a mean. This model assumes that loca-
tions are crossed with years, i.e. at least some locations are 

(1)
yijk = µ + Gi + Lj + Yk + (LY)jk

+ (GL)ij + (GY)ik + (GLY)ijk ,

Table 1   Basic information on the yield trial data for winter wheat and spring barley

Crop Trait No. of  
observations

No. of  
genotypes

Average age  
of genotype

No. of 
years

No. of  
locations

Percentage of 
genotype-year- 
location-combi-
nations

Winter wheat Grain yield (dt/ha) 22,820 286 3.51 30 115 2.13

Mildew susceptibility (1–9) 17,174 286 3.51 30 108 1.70

Septoria leaf blotch susceptibility (1–9) 17,341 286 3.51 30 105 1.90

Spring barley Grain yield (dt/ha) 15,871 176 3.78 30 113 2.37

Mildew susceptibility (1–9) 10,533 176 3.78 30 108 1.68

Net blotch Susceptibility (1–9) 7,874 175 3.56 29 88 1.62
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used across several years. If all effects except μ, Gi and Yk 
are assumed to be random and independent with constant 
variance for each effect, genetic and non-genetic time trend 
may be studied by inspecting the adjusted means for geno-
types and years (Mackay et  al. 2011). We here carry this 
approach one step further by explicitly integrating regres-
sion terms for time trends.

Time trends will need to be incorporated in an explicit 
model for main effects of year and genotype. If there is a 
linear genetic time trend, then Gi should reflect this trend 
when plotted against the year that a genotype first entered 
the trials. Thus, we may model Gi explicitly as a function 
of year of first testing, ri, i.e.

where β is a fixed regression coefficient for genetic trend 
and Hi models random deviation of Gi from the genetic 
trend line. We assume that Hi follows a normal distribution 
with zero mean and variance σH

2 . Similarly, if there is a lin-
ear non-genetic time trend, then the year main effect can be 
modelled as

where γ is a fixed regression coefficient for non-genetic 
trend, tk is the continuous covariate for the calendar year 
and Zk is a random residual following a normal distribution 
with zero mean and variance σZ

2 . Genetic and non-genetic 
trend can be quantified by the regression coefficients β and 
γ, respectively, directly giving the yield increase per year, 
measured in the same units as yijk. If graphical inspection of 
the data, a lack-of-fit test or estimates for Gi and Yk reveal 
nonlinearity of trend, then the linear regression models can 
be replaced by nonlinear models, e.g. quadratic polynomi-
als (Lopes et al. 2012; also see Electronic Appendix A) or 
splines (Verbyla et  al. 1999). Subsequently, in the paper 
we will frequently use the term agronomic trend in place 
of non-genetic trend, though we are aware that long-term 
non-genetic trends may also be due to other causes such as 
climate change.

Effect of resistance breakdown

The trend model developed so far has two linear compo-
nents. We here repeat the full fixed-effects regression part 
of our model for clarity:

where ηik is the expected response of the ith genotype in 
the kth year. A common feature of new varieties is that they 
may loose part of their genetic potential over time due to 
disease-resistance breakdown (Silvey 1978; Mackay et  al. 
2011). This suggests that to fully describe the trend over 
time, we should add the time elapsed since the first harvest 

(2)Gi = βri + Hi,

(3)Yk = γ tk + Zk ,

(4)ηik = µ + βri + γ tk ,

year as a third covariate to capture any effects due to resist-
ance breakdown. This age at testing can be computed for 
the ith genotype in the kth year as

Adding a linear regression term for this age covariate to 
our trend model we have

where δ is the fixed regression coefficient for the age 
covariate aik. As it turns out, however, because of the linear 
dependence of aik on ri and tk, and the resulting singularity 
in the design matrix for (5), the three regression parameters 
are not independently estimable. Nevertheless, the exten-
sion of the model by the age covariate aik does provide 
some useful insights. Using the definition (5) in (6), we find

which can be rearranged to give

where

and

The Eq. (8) shows that if there is a genetic decay of 
new varieties, e.g. due to the loss of resistance properties, 
then a regression on first year of test ri and calendar year tk 
does not give estimates of trend slopes β and γ, but we are 
then estimating apparent trends β̃ = β − δ and γ̃ = γ + δ, 
respectively.

If our trait of interest is yield, meaning that high values of 
the response are desirable, and if a decay of resistance and 
other desirable properties leads to a decreasing yield trend, 
then we have δ < 0. Thus, we would then be overestimating 
the genetic trend (β̃ > β) and we would be underestimating 
the agronomic trend (γ̃ < γ). In particular, it may happen that 
the apparent agronomic (non-genetic) trend is estimated to be 
negative (γ̃ < 0), although the true trend is positive (γ > 0). 
Conversely, if for the trait of interest smaller values for the 
response are desirable, the same reasoning applies with oppo-
site signs. For example, scores for mildew resistance range 
from 1 (zero to lowly susceptible, desirable) to 9 (highly sus-
ceptible, undesirable). In this case, it may happen, that the 
apparent agronomic trend is estimated to be positive (γ̃ > 0), 
although the true agronomic trend is negative (γ < 0).

Estimation of an effect of resistance breakdown (δ)

The German registration trials are conducted with two 
intensities. At intensity 1, no fungicides are used, while at 

(5)aik = tk − ri.

(6)ηik = µ + βri + γ tk + δaik ,

(7)ηik = µ + βri + γ tk + δ(tk − ri),

(8)ηik = µ + β̃ri + γ̃ tk ,

(9)β̃ = β − δ

(10)γ̃ = γ + δ.
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intensity 2, fungicides are applied. If we assume that no 
ageing effect occurs at intensity 2, because risk breakdown 
can be fully compensated by plant protection measures, 
then δ =  0 for intensity 2, so the difference of responses 
for the two intensities provides information on the size of 
δ. Alternatively, δ may also be non-zero for intensity 2, but 
reduced in absolute value as compared to intensity 1, mean-
ing that compensation by plant protection is not complete. 
Thus, to be general, we will just assume that δ is intensity 
specific. Afterwards we consider the special case that δ = 0 
for intensity 2. Thus, from (8), (9) and (10), the regressions 
for the two intensities are

for intensity 1 and

for intensity 2 with

and

where m indexes the two intensities (I1 and I2). It is 
assumed in (13) and (14) that the slope parameters β and 
γ are the same for both intensities. This strong assumption 
can be challenged by a lack-of-fit test as will be explained 
below. Under these assumptions, we can postulate that 
a regression on ri and tk of the difference of the response 
between intensity 2 and intensity 1 estimates the regression

where

and

If the relations (13) and (14) hold, we find that 
β̄ = δ

1
− δ

2
 and γ̄ = δ

2
− δ

1
, so that the regression model 

for the intensity differences becomes

Model (18) also follows directly from (7) if we assume 
that only the regression coefficient δ differs between inten-
sities. To test the fit of the reduced model (18) compared to 
the full model (15), we can regress the response difference 
of intensities 2 and 1 on both ri and tk using the model (14) 
and then test the null hypothesis H

0
: β̄ = −γ̄. If no evi-

dence of lack-of-fit is found in this test, the best estimate 

(11)ηik1
= µ

1
+ β̃

1
ri + γ̃

1
tk

(12)ηik2
= µ

2
+ β̃

2
ri + γ̃

2
tk

(13)β̃m = β − δm (m = 1, 2)

(14)γ̃m = γ + δm (m = 1, 2),

(15)

ηik2
− ηik1

= (µ
2
− µ

1
) + β̃

2
ri + γ̃

2
tk −

(

β̃
1
ri + γ̃

1
tk

)

= (µ
2
− µ

1
) + β̄ri + γ̄ tk ,

(16)β̄ = β̃
2
− β̃

1

(17)γ̄ = γ̃
2
− γ̃

1
.

(18)
ηik2

− ηik1
= (µ

2
− µ

1
) + (δ

1
− δ

2
)ri − (δ

1
− δ

2
)tk

= (µ
2
− µ

1
) − (δ

1
− δ

2
)aik

of (δ1 − δ2) is obtained by a regression of the difference on 
−aik according to model (17). Furthermore, if we assume 
that δ2 = 0, we can replace (δ1 − δ2) with δ1 in the above 
derivations. Note, however, that H0 : δ2 = 0 is an untestable 
assumption. Even so, if we find that (δ1 − δ2) ≠ 0 in our 
analyses, we may conclude that there is indeed an ageing 
effect, although we cannot quantify that effect separately 
for the two intensities unless we are willing to make the 
strong, and generally untestable assumption that δ2  =  0. 
Thus, the value of the estimate of the coefficient for the 
regression on aik should probably not be over-interpreted. 
Some progress can be made if independent evidence is 
available on β, e.g. from yield trials concurrently evaluat-
ing old and new varieties (see “Discussion”).

Use of time of first testing (ri) as categorical variable

In (2) we modelled genetic trend by a linear regression on 
the time variable ri. Alternatively, we can group genotypes 
according to levels of the time variable. Thus, we may 
define a fixed categorical effect Cp for groups p = 1, …, P, 
where P is the number of levels of ri, such that each group 
is represented by at least one genotype and at least some 
groups comprise more than one genotype. Thus, the genetic 
effect can be modelled by

where Hi is the random deviation from the trend, as in 
(2). For visually inspecting trend, it is useful to compute 
adjusted means for Cp and plot these against first year of 
testing (ri). We can also use the categorical group effect to 
test the lack-of-fit of the linear trend model (2). Thus, we 
may extend (2) as 

If in this model the fixed effect Cp is significant, it may 
be concluded that there is a significant lack-of-fit. In that 
event, the model (2) may be extended, e.g. by a quad-
ratic term (see Electronic Appendix A), and re-tested for 
lack-of-fit.

Use of age at testing (aik) as categorical variable

To study the effect of the age of a variety, age may be fitted 
as a categorical effect, i.e. we use the baseline model (1) 
and replace the genotype-year interaction effect by

where Dq (q = 1, …, Q) is the fixed effect for the qth age 
class, Q is the maximum age of a variety in the dataset, and 
(ZH)ik is a random residual genotype-year interaction with 
zero mean and variance σZH

2 . To visualize trend, we may 
plot adjusted means for Dq against age (aik).

(19)Gi = Cp + Hi,

(20)Gi = βri + Cp + Hi.

(21)(GY)ik = Dq + (ZH)ik ,



1013Theor Appl Genet (2014) 127:1009–1018	

1 3

Graphical displays for each intensity

All effects in the proposed models are random, except the 
intercept μ, the regression coefficients (β, γ and δ) and the 
group effects Cp and Dq. The fixed regression part of the 
model, i.e. μ  +  βri  +  γtk (Eq.  4), is not straightforward 
to depict in two dimensions because there are two covari-
ates and a response, which involves three dimensions. The 
following plots can be considered based on the proposed 
models:

(1) Apparent genetic trend can be depicted by plot-
ting adjusted genotype-group means for Cp based on (19), 
inserted in the baseline model (1), against time (ri).

(2) Apparent agronomic trend can be depicted by plot-
ting adjusted year means for Yk using the baseline model 
(1), inserting (19) to model Gi.

(3) Age effects can be assessed by plotting adjusted 
means for Dq using (21), inserted in the baseline model (1), 
against age (aik).

(4) Overall trend can be depicted by plotting the regres-
sion line

against time (tk). This is the frontier line representing 
the varieties released in year tk as well as the agronomic 
advance in year tk. Moreover, we can draw genotype-
specific regression lines starting at the frontier line, given 
by Eq. (4), although the graph can become too crowded 
when there are many genotypes. We can also draw the 
corresponding line with a genotype-specific starting point 
depending on the residual effect Hi, i.e.

This kind of plot is illustrated in Fig. 1 for yield trend of 
three winter wheat genotypes at intensity 1. When the trend 
is found to be quadratic, plots can be defined analogously.

Graphical displays for differences of intensities 2 and 1

For a plot of differences, the frontier line can be defined as

In addition, all plots used for individual intensities can 
also be produced for the yield difference.

Results

We considered using the Kenward and Roger (1997) 
method for adjusting the denominator degrees of freedom 
for the Wald-type F and t tests of fixed effects. Looking at 
a few traits, it turned out that because of the large size of 
the datasets this had virtually no effect on the outcome of 

(22)ηk = µ + (β + γ )tk

(23)ηik = µ + βri + Hi + γ tk .

(24)ηik2
− ηik1

= (µ
2
− µ

1
) +

(

β̄ + γ̄
)

tk

the tests. Thus, subsequently we did not use the Kenward–
Roger method in our final analyses for all traits because 
this saved considerable computing time and allowed us to 
use the computationally efficient procedure HPMIXED in 
SAS, which exploits sparse matrix methods. Some of the 
SAS code we used is given in Electronic Appendix E.

We here report results for a linear trend. For mildew 
susceptibility trends have a slightly nonlinear component 
(Fig. 2b, d). Despite some apparent nonlinearities and indi-
cation of lack-of-fit (Table  3), we report linear regression 
results for mildew for ease of interpretation (Tables  2, 4, 
5). In addition, we also fitted quadratic models for mildew, 
which yielded similar conclusions. The quadratic models 
are described in Electronic Appendices A and B and the 
numerical results are shown in Electronic Appendix C.

For both crops and traits, the genotype-location and 
genotype-year interaction variances are small compared to 
that for the three-way interaction (Table 2). Also, variances 
for year and location main effects, as well as for year-loca-
tion interaction are relatively large compared to variances 
for effects involving genotype. For grain yield the geno-
type variance is larger than the year variance whereas the 
reverse relation is true for mildew (Table 2). These results 
are in good agreement with estimates typically found in 
these trials (Laidig et al. 2008).

Interestingly, the apparent non-genetic yield trend for 
wheat under intensity 1 is negative. This result is most 
likely due to ageing effects. If we assume that intensity 
2 captures trends free of age effects (δ2 = 0), then it may 
be concluded for winter wheat that most of the trend is 
due to genetic causes (β̂ = 0.53  dt  ha−1  year−1), amount-
ing to about three times the contribution of non-genetic 
causes (γ̂ = 0.19  dt  ha−1  year−1) (Table  4). The situa-
tion is similar in spring barley (β̂ = 0.39  dt  ha−1  year−1, 
γ̂ = 0.11  dt  ha−1  year−1) (Table  5). By contrast, for mil-
dew resistance, almost all trends are genetic for intensity 
1 (Tables 4, 5). It needs to be re-iterated, however, that this 
interpretation of results assumes that δ2 =  0, which is an 
untestable assumption. In the discussion some evidence 
is presented suggesting that for winter wheat yield δ2 < 0. 
Thus, the regression of yield differences on the age covari-
ate −aik probably estimates the difference (δ1 − δ2) rather 
than δ1.

The frontier lines for wheat yield have similar slopes 
for both intensities (Fig.  2a), whereas slopes for apparent 
genetic and non-genetic yield trends are quite different for 
both intensities (Table  4). This is most likely due to age-
ing effects operating mainly under intensity 1. For yield in 
spring barley, differences in slopes for the two intensities 
are somewhat more pronounced (Fig. 2c; Table 5). For mil-
dew susceptibility we find that genetic trends are decreas-
ing under intensity 1 for both winter wheat and spring bar-
ley (Fig. 2b, d; Tables 4, 5), which likely reflects an ageing 
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effect. Under intensity 2, there appears to be little genetic 
trend. For both traits and crops, there is clear evidence 
of an ageing effect (Fig. 3; Tables 4, 5). For Septoria leaf 
blotch in winter wheat, the ageing effect seems to be more 
pronounced than that for net blotch in barley (Table C5 in 
Electronic Appendix C and Figures S1 and S2 in Electronic 
Appendix D).

Discussion

The linear regression approach did not give a perfect fit 
in all four cases studied, as evidenced by some significant 
lack-of-fit tests (Table  3). The problem persisted when 
quadratic trends were fitted (Electronic Appendix C), so 
there may be some irregularities in the data preventing a 

simple trend model from giving a perfect fit. Nonetheless, 
we think that the linear trend models capture the main fea-
tures, and this is supported by visual inspection of Figs. 2 
and 3. It should be kept in mind that the datasets are rather 
large, so the power to detect even minor departures from 
model assumptions such as linearity or independence of 
regression coefficients from intensities is expected to be 
high.

In winter wheat, the mildew susceptibility dropped nota-
bly for both intensities (Fig. 2b). These changes correlate 
with intensive resistance breeding efforts up to about the 
year 1992. Figure  2b, d indicates that there is a gradual 
increase of mildew susceptibility with increasing age of a 
genotype due to loss of resistance.

Our results confirm the general experience and the obser-
vation by other authors (Silvey 1978, 1981, 1986; Mac-
kay et  al. 2011) of a gradual breakdown of disease resist-
ance within a few years after variety release. The resulting 
decline in yield potential of varieties is probably one of the 
major driving forces behind the adoption of new varieties 
with higher yield potentials by farmers. Most of the geno-
types in our wheat and barley datasets were in trial for only 
3 years (Table 1). The declining effect due to disease-resist-
ance breakdown was probably still fully operative for most 
varieties for most of the time, including the standard varie-
ties which were in trials for a longer period than the other 
varieties. Out of the 286 winter wheat genotypes, only 16 % 
were standard varieties, however, 48 % of the total number 
of observations are from these standards. For spring barley 
14 % were standards comprising 41 % of the total number of 
observations. It is important to realize that the ageing effect 
due to disease breakdown confounds estimates of long-term 
genetic and non-genetic trend, as can be seen from Eq. (8). 
This problem cannot be fully resolved, unless one is pre-
pared to make some strong assumptions. As was demon-
strated in this paper, some progress can be made if two agro-
nomic intensities are tested, one of which (I2) is believed to 
mask the ageing effect. This assumption is underlying our 

Table 2   Variance component 
estimates for winter wheat 
and spring barley and both 
traits (yield, mildew score) at 
intensities 1 and 2 (I1 and I2) 
based on model (1) using linear 
trend models (2) and (3)

Effect Winter wheat Spring barley

Yield (dt/ha) Mildew suscepti-
bility

Yield (dt/ha) Mildew suscep-
tibility

I1 I2 I1 I2 I1 I2 I1 I2

Hi (genotype) 16.5 17.2 0.426 0.089 10.5 11.8 0.506 0.158

Zk (year) 20.6 24.5 0.083 0.009 14.7 15.9 0.036 0.010

Lj (location) 37.0 57.2 0.482 0.139 30.3 27.0 0.216 0.089

(GL)ij 3.2 2.2 0.098 0.027 1.2 0.9 0.191 0.073

(GY)ik 4.3 3.5 0.049 0.013 1.3 1.0 0.101 0.031

(LY)jk 74.1 81.6 0.784 0.421 71.9 77.7 0.409 0.318

(GLY)ijk 22.4 19.6 0.615 0.237 13.2 12.9 0.673 0.407

Fig. 1   Plot for winter wheat grain yield (dt/ha). Solid red line Eq. 
(22), frontier line. Solid black line (shown for three genotypes) Eq. 
(4). Dashed black line (shown for three genotypes) Eq. (23). Scatter 
plot (three different symbols for three different genotypes): adjusted 
genotype-by-year means based on Eq. (1), taking year, genotype and 
the corresponding interaction as fixed (color figure online)
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Fig. 2   Adjusted means for grain yield of winter wheat for intensity 
2 (I2) and intensity 1 (I1). a Winter wheat, yield. b Winter wheat, 
mildew score. c Spring barley, yield. d Spring barley, mildew score. 
GENETIC: variety group means [effect Cp in Eq. (19)]; this assesses 

genetic trend. AGRONOMIC: year means [Eq. (1), using Eq. (19) to 
model Gi]; this assesses non-genetic trend. FRONTIER: frontier line 
[Eq. (22)]

Table 3   Lack-of-fit tests based on three different null hypotheses [see Eqs. (14), (19), and (21)]

H0 : Cp = 0 implies linearity of genetic trend. H0 : Dq = 0 corresponds to linearity of the regression on age

H
0

: β̄ = −γ̄ holds if genetic and non-genetic trend can be assumed to be the same for both intensities

Null hypothesis Intensity Winter wheat Spring barley

Yield Mildew susceptibility Yield Mildew susceptibility

F value p value F value p value F value p value F value p value

Cp = 0 Intensity 1 (I1) 0.86 0.7029 3.29 <0.0001 0.99 0.4803 1.65 0.0109

Intensity 2 (I2) 0.75 0.8470 7.80 <0.0001 1.03 0.4121 4.08 <0.0001

I2–I1 1.72 0.0062 1.70 0.0078 1.95 0.0007 3.07 <0.0001

Dq = 0 I2–I1 1.43 0.0773 5.03 <0.0001 1.01 0.4484 1.69 0.0282

β̄ = −γ̄ I2–I1 1.30 0.2551 0.02 0.8757 8.19 0.0042 0.13 0.7228
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approach based on intensity differences. It must be stressed, 
however, that this approach also relies on the strong assump-
tion that true genetic and non-genetic trends are identical 
between both intensities. Moreover, analysis based on two 
intensities only allows estimation of the contrast of ageing 
effects (δ1 − δ2) for the two intensities, but not of the age-
ing effects themselves (δ1, δ2). Additional experiments would 
need to be conducted that allow an unequivocal separation of 
long-term trend from ageing effects.

There are a few studies that compare old and current 
varieties in joint variety trials (Perry and D’Antuono 1989; 
Ahlemeyer and Friedt 2011; Lopes et al. 2012). It is inter-
esting to compare results of these experiments with the 
trends observed in long-term data. When all varieties from 
different eras are grown together, then for the older vari-
eties the decay due to resistance breakdown is probably 
complete, while the decay only continues for the newer 
releases. This could explain the relatively small observed 
genetic trend for winter wheat in the treated trials by Ahl-
emeyer and Friedt (2011) (about 0.34 dt ha−1 year−1 dur-
ing 1996–2007) under conditions comparable to inten-
sity 2 compared to the genetic trends in long-term data in 
Mackay et  al. (2011) (about 0.74  dt  ha−1  year−1 during 
1982–2007) or the apparent trend of 0.53  dt  ha−1  year−1 
for wheat yield with intensity 2 in our analyses (Table 4). 

It may be speculated that the trend in the trials of Ahle-
meyer and Friedt (2011) reflects purely genetic trend (β), 
while the trends based on long-term multi-environment 
trial (MET) data provide estimates of apparent genetic 
trends (β̃

2
= β − δ

2
 with δ2 < 0), which overestimate true 

genetic trends as shown in this paper. Thus, if we assume 
that β  =  0.34  dt  ha−1  year−1 based on results in Ahl-
emeyer and Friedt (2011) and that β̃

2
= β − δ

2
= 0.53 

from our analysis (Table  4), then we may conclude that 
δ2 = −0.19 dt ha−1 year−1, implying a substantial ageing 
effect even under intensity 2. Moreover, since our estimate 
of (δ1  −  δ2) equals −0.29  dt  ha−1  year−1 (Table  4), the 
ageing effect under intensity 1 can be concluded to equal 
δ1 = −0.48 dt ha−1 year−1. The difference in ageing effects 
under the two intensities (δ1 − δ2) of −0.29 dt ha−1 year−1 
would be due to plant protection measures buffering the 
effect of disease-resistance breakdown. In summary, our 
modelling approach, combined with these results, sug-
gests that long-term trial data analyses tend to overestimate 
genetic trend.

James and Segal (1982) describe a similar confound-
ing problem as the one presented here in the context of 
so-called age-period-cohort analysis of cancer mortal-
ity data. This analysis involves effects of calendar year, 
age at death and epoch of birth (cohort effects), which are 

Table 4   Estimates of 
regression coefficients in mixed 
model linear regression analyses 
for winter wheat

SE standard error, p   p value 
of t test
§  Test of H

0
: β̄ = −γ̄ not 

significant at 5 % level (Table 3)

Trait Intensity Slope estimates for regression on

Year of first trial (ri) Calendar year (tk) Years since application 
(aik = tk − ri)

Estimate SE p Estimate SE p Estimate SE p

Yield 1 0.817 0.044 <0.0001 −0.197 0.111 0.0752 – – –

2 0.530 0.042 <0.0001 0.161 0.119 0.1748 – – –

2–1 −0.286§ 0.024 <0.0001 0.360§ 0.068 <0.0001 0.287 0.024 <0.0001

Mildew 1 −0.095 0.006 <0.0001 0.052 0.009 <0.0001 – – –

2 −0.042 0.003 <0.0001 −0.002 0.005 0.6507 – – –

2–1 0.053§ 0.005 <0.0001 −0.055§ 0.008 <0.0001 −0.054 0.004 <0.0001

Table 5   Estimates of 
regression coefficients in mixed 
model linear regression analyses 
for spring barley 

SE standard error, p  p value of 
t test
§  Test of H

0
: β̄ = −γ̄ not 

significant at 5 % level (Table 3)

* Test of H
0

: β̄ = −γ̄ 
significant at 5 % level (Table 3)

Trait Intensity Slope estimates for regression on

Year of first trial (ri) Calendar year (tk) Years since application 
(aik = tk − ri)

Estimate SE p Estimate SE p Estimate SE p

Yield 1 0.455 0.036 <0.0001 −0.081 0.095 0.3973 – – –

2 0.391 0.036 <0.0001 0.093 0.098 0.3420 – – –

2–1 −0.065* 0.014 <0.0001 0.165* 0.037 <0.0001 0.067 0.014 <0.0001

Mildew 1 −0.098 0.009 <0.0001 0.055 0.009 <0.0001 – – –

2 −0.052 0.005 <0.0001 0.010 0.006 0.1031 – – –

2–1 0.046§ 0.006 <0.0001 −0.040§ 0.006 <0.0001 −0.046 0.005 <0.0001



1017Theor Appl Genet (2014) 127:1009–1018	

1 3

similarly confounded as in our models. Recently, Bayesian 
approaches have been proposed to overcome the non-iden-
tifiability problem in these types of model (Fukuda 2008). 
The resolution comes at the price of strong prior assump-
tions built into the prior distribution. If such assumptions 
can be specified and quantified, a Bayesian approach may 
also be useful for analysing yield trends.

There are some differences of our modelling approach 
compared to those used in other studies. Silvey (1978, 
1981, 1986) assesses the realized genetic trend for the UK, 
because she weights genotype means in a year by their 
growing areas or the sold amount of commercial seeds. 
By contrast, in the present work, we consider the potential 

genetic gain (β) that can be realized if each year the new-
est available genotypes are grown. In our analyses we have 
considered years and locations as crossed factors. Some 
authors either implicitly (Silvey 1978) or explicitly (Mac-
kay et  al. 2011) model locations as nested within years, 
which makes sense when locations change much between 
years which appears to be the case in many UK trials. 
The nested design usually provides more accurate geno-
type means because across years more locations are tested 
than in a crossed design where the same locations are seen 
repeatedly across years.

The susceptibility to mildew was assessed on an ordi-
nal rating score (1–9), but analysed as metric data. This 

Fig. 3   Difference between adjusted means of intensity 2 (I2) and 
intensity 1 (I1) for grain yield of winter wheat and effect of variety 
age. a Winter wheat, yield. b Winter wheat, mildew score. c Spring 
barley, yield. d Spring barley, mildew score. GENETIC: variety 
group means [effect Cp in Eq. (19)]; this assesses genetic trend. 

AGRONOMIC: year means [Eq. (1), using Eq. (19) to model Gi]; 
this assesses non-genetic trend. FRONTIER: frontier line [Eq. (22)]. 
AGE: effect of variety age (1970 corresponds to age 0) on difference 
between intensity 2 and 1) (model (1), combined with [Eq. (21)])
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is standard procedure in the analysis of variety trials and, 
in fact, decisions on whether a new genotype is registered 
were based on such analyses, so we followed the same type 
of analysis here. Strictly speaking the data cannot meet 
usual assumptions of normality and homogeneity of vari-
ance, although residual analysis revealed no gross depar-
tures, so analysing these data as if they were metric seems 
acceptable here. More specialized methods for ordinal data 
do exist, such as the threshold model (Thöni 1985; Har-
tung and Piepho 2005), but they are difficult to apply here 
because only a single score was available per plot, while fit-
ting the threshold model ideally requires a sample of 10–20 
plants per plot to be scored (Thöni 1985). A further option 
is to use non-parametric methods based on ranks, but so far 
such methods are available only for balanced series of trials 
(Bathke et  al. 2010). The ordinal rating scale is based on 
an underlying percentage scale for the infected leaf area. 
Thus, if disease susceptibility could be scored as percent-
age, metric data would be available and such information 
may be more accurate than ordinal data (Hartung and Pie-
pho 2007).
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